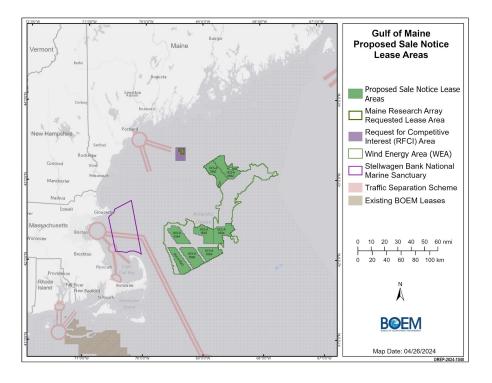


rodafisheries.org/portfolio/iea/

INTEGRATED ECOSYSTEM ASSESSMEN

Northeast Fisheries Science Center
 Responsible Offshore Development Alliance
 Oregon State University
 University of Rhode Island

Monitoring Offshore Wind Development Impacts On Fisheries With An Integrated Ecosystem Assessment

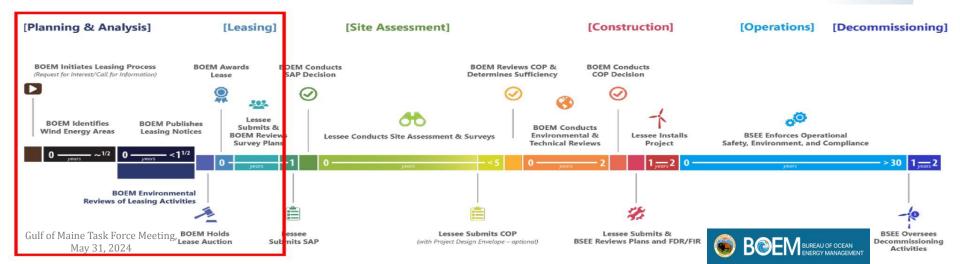

Gulf of Maine, USA

Abby Tyrell¹, Angela Silva¹, Fiona Hogan², Julia Bingham³, Tyler Pavlowich⁴, Lauren Josephs⁴, Jen McCann⁴, Andy Lipsky¹

Annual meeting of the American Fisheries Society Honolulu, HI September 18, 2024

ĭ abigail.tyrell@noaa.gov

Wind energy in the Gulf of Maine


- August 19, 2022: Request for Interest in Gulf of Maine offshore wind announced
- March 15, 2024: Final Wind Energy Area announced
- April 30, 2024: 8 proposed lease areas identified (auction expected in fall 2024)
- August 19, 2024: State Research Array lease executed

https://www.maineoffshorewind.org/research-array/

Data & analysis needs

- Guidelines for data assessment
- Cumulative & indirect impacts
- Potential on-ramps to decision making processes
 - Environmental Impact Statements
 - Monitoring plans by federal and state governments, wind developers, and others
 - State of Maine environmental requirements in Power Purchase Agreement(s)

Addressing needs with IEA

PROJECT GOAL

Collaboratively work with ocean users to identify complex interactions between offshore wind, fisheries, and the environment and provide tools to inform environmental analyses and reviews.

PROJECT STEPS

- **1. Map key linkages and interactions** between offshore wind development, fisheries, and the environment through conceptual modeling and knowledge co-development
- 2. Identify priority concerns and key indicators, and gather data that can help measure the current conditions and future effects from offshore wind through these linkages
- 3. Assess and monitor indicators, risks, and tradeoffs over time
- 4. Communicate report through existing management pathways
- 5. Iterate & improve product

Public comment analysis

 Sensitive to fishermen's time and to avoid duplicative effort, we used thematic coding to analyze comments submitted to BOEM's Request for Information for the Gulf of Maine on regulations.gov

Displacement/effort/acc

Fisherie Safety/Navigatio.

• We focused on fishing industry comments as a starting point

Code System	Fishing Industry
Siting Location & Design	28
Shoreside communities	4
Mitigation	40
@ IPFs	17
🧑 Marine mammals	10
Fisheries Biology/Ecology	9
💽 Habitat	20
Cceanographic Impacts	8
V Co Fisheries	81
Costs/compensation	2
Oisplacement/effort/access	12
C Future use	4
Safety/Navigation	8
G fishing ports/communities	6
C Species	2
Fishing location/activity	20
Regulations/Management	12
Complex/unique ecosystem	11
Leasing Process	85
> @ Research & Data Needs	107

Currently, there are no commercial scale floating offshore wind projects in the world that can provide insight into how fishing activity might be impacted, but generally speaking, offshore wind can cause significant displacement of fishing effort from historic and current grounds, as fishermen may be excluded from an area through various channels, including liability insurance, or for safety reasons, or because their gear type simply isn't compatible with the installation of the turbines (e.g. towing a net through a floating array with inter-array cables suspended in the water column would not be possible). Wind farms and transmission cables can create safety and navigation hazards, through radar interference, or potential risk of getting towed fishing gear caught on a buried cable that fails to stay sufficiently buried. Offshore wind farms may

Key themes from public comment analysis

Environment and Ecology

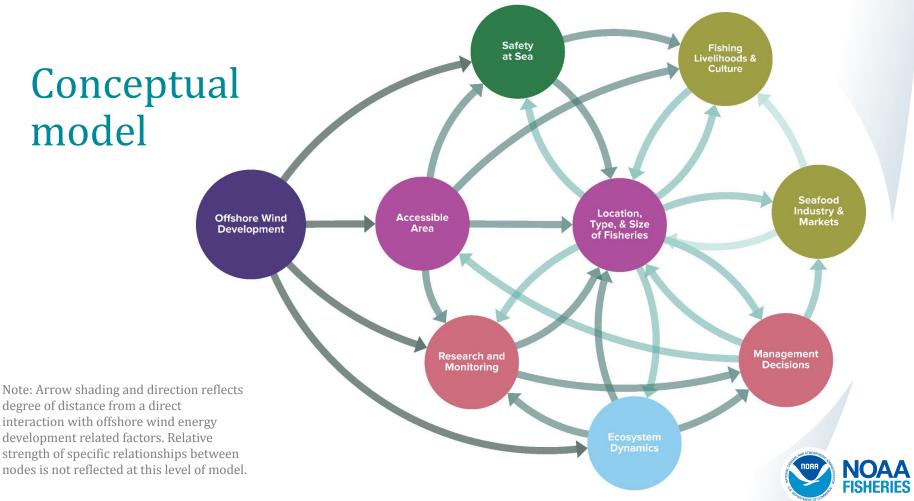
- Sedimentation
- Changes to pelagic and benthic habitat
- Upwelling, currents, and stratification
- Habitat for specific life stages
- Trophic interactions
- Population dynamics
 - Spawning
 - Migration
 - Larval & juvenile recruitment
 - Natural mortality
- Protected species
- Complex effects of climate change

Safety at Sea

- Accidents at sea
- Search and rescue efforts
- Navigation
- Radar
- Damage and risk

Research, Monitoring, and Management

- Accessible by boat or ROV / drone
- Permitting requirements
- Survey gear compatibility
- Stock assessment data needs
- Increased scientific uncertainty leading to more restrictive management


Social, Cultural, and Economic

- Fishing identity
- Place based identity
- Sense of place
- Well-being
- Heritage & traditions
- Cultural value
- Social and place relationships
- Community networks

Fishing Activities

- Area
 - Accessible area
 - Available / open fishing areas
 - Transit lanes
 - De facto exclusion of fishing
- Activity
 - Displacement of fishing effort
 - Fisher responses to changes
- Gear Constraints
 - Gear entanglement
 - Gear damage
- Catch
 - Amount caught
 - Amount landed
 - Bycatch rate

Public workshops

Date	Location	Description of participants
12/11/2023	Ellsworth, ME	Fishing industry
12/12/2023	Brunswick, ME	Fishing industry
12/13/2023	Portsmouth, NH	Fishing industry
12/14/2023	Gloucester, MA	Fishing industry
1/4/2024	Virtual	Academic & governmental researchers
1/5/2024	Virtual	Academic & governmental researchers
1/5/2024	Virtual	Academic & governmental researchers

	Social, Cultural, and Economic	Environment and Ecology	Research, Monitoring, and Management	Fishing Activities	Safety at Sea
Fishing community workshops (four locations, 35 total participants)	Cultural value & wellbeing (not just \$\$\$) Vulnerability and equity of impacts Ability to influence offshore wind decisions	Species migrations, EMF, heat, benthic disturbances Impacts to target species	Lack of data leading to more restrictive management Monitoring as mitigation	Displacement & increased costs Impacts to onshore infrastructure Cumulative stressors	Perceived risks drive behavior changes
Common themes	Community dependence on fisheries will drive impacts	Dynamism, climate change & non-wind drivers Larval distributions	-	Perceptions influence fishing activity	Uncertainty around safety impacts
Researcher workshops (three events, 28 total participants)	Community macroeconomics Multiple levels & scales of conflict Perceptions influence behavior Existing values and perceptions research	Habitat, trophic interactions, and hydrodynamics Research & outreach to communicate accurate risk information	At-scale impacts Need for data & knowledge sharing strategies	Shoreside infrastructure, community culture, macroeconomics	Connections to socioeconomic impacts

Recurring areas of interest from public discussions

- Dynamism, climate change & non-wind drivers
- Scientific survey impacts
- Perceptions influence behaviors & activities

Figure 3. Appropriate management

responses based on uncertainty and

controllability.

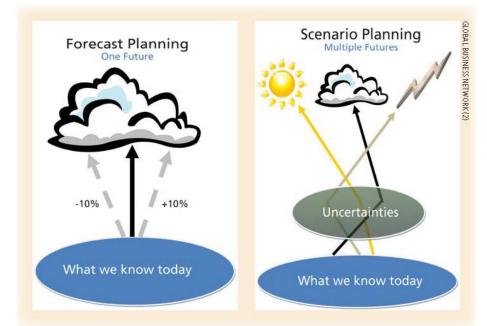
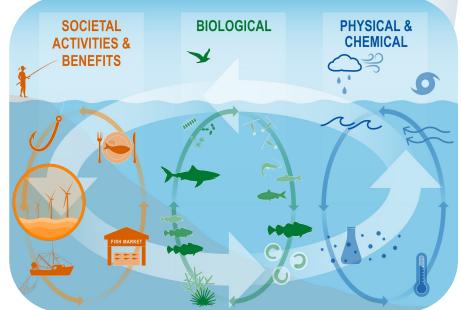


Figure 2. Forecast planning (a, at left) vs. scenario planning (b, at right).

Weeks et al. 2011


Data inventory

- Identify data that can be used to monitor and assess conceptual model nodes and connections
- Incorporate existing NOAA datasets and related projects
 - <u>Regional Wildlife Science</u>
 <u>Collaborative for Offshore Wind</u>
 <u>database</u>
 - <u>Responsible Offshore Science Alliance</u> <u>"FishFORWRD" database</u>

Indicator development & next steps

- Create candidate indicators from data inventory
 - Explicit time, space, and units
 - Indicators are proxies of key conceptual model themes: social, cultural, and economic; environment and ecology; research, monitoring, and management; fishing activities; safety at sea
- Score indicator utility
 - Contribution to understanding the system
 - Ability to create, maintain & update
- Work with steering committee to select indicators
- Create & assess indicators; report out & iterate

State of the Ecosystem Report 2024

Acknowledgements

⊠ abigail.tyrell@noaa.gov

Steering Committee Members			
Dierdre Boelke	RWE		
Doug Christel	GARFO		
Greg DiDomenico	Lund's Fisheries		
Annie Hawkins	RODA		
Fiona Hogan	RODA		
Brian Hooker	BOEM		
Lauren Josephs	URI		
Andy Lipsky	NEFSC		
Cristin Mayes	NEFSC (affiliate)		
Jen McCann	URI		
Tyler Pavlowich	URI		
Mike Pol	ROSA		
Angela Silva	NEFSC		
Abby Tyrell	NEFSC		
Kate Wilke	TNC		
Casey Yanos	Maine DMR		

This study was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management through Interagency Agreement M22PG00023 with the National Oceanic and Atmospheric Administration.

