
SPATIAL AND **TEMPORAL DYNAMICS OF FISH IN AN OFFSHORE WIND** LEASE AREA

Chris Rillahan¹, Keith Hankowsky¹, Crista Bank², Pingguo He¹ 1 University of Massachusetts Dartmouth – School for Marine Science and Technology (SMAST)

² Vineyard Wind

ATLANTIC OFFSHORE WIND DEVELOPMENT

VINEYARD WIND 1

First commercial-scale offshore wind project in US

Project Details:

- 15 miles (~25 km) south of Martha's Vineyard, MA
- 62 GE Haliade-X Turbines (13 MW)
 - 1 nm. grid spacing
- 1 Electric Service Station
- 800 MW Capacity = 400,000 homes
- Project Area = 306 sq. km.

Project Highlights:

- OCS-A 0501 Leased in 2015
- Offshore Construction started in 2023
- First power: January 2, 2024

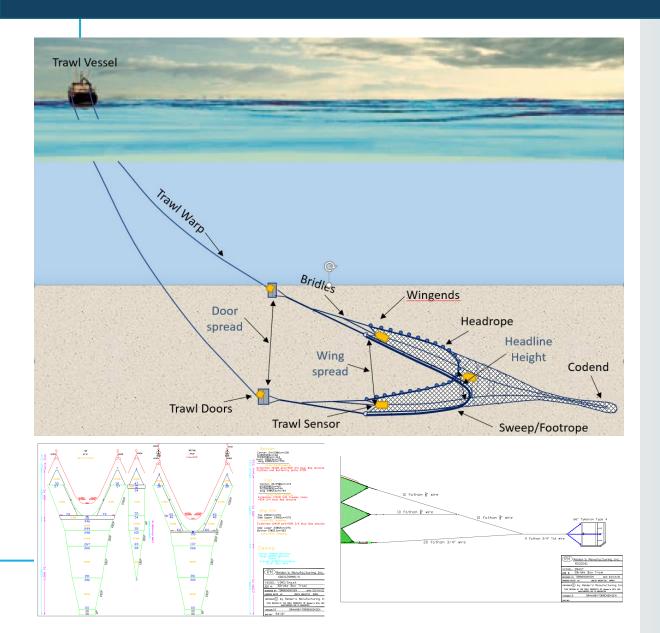
VINEYARD WIND 1 – FISHERIES MONITORING PLAN

Steve Cadrin, Kevin Stokesbury and Alex Zygmunt University of Massachusetts Dartmouth School for Marine Science and Technology Department of Fisheries Oceanography March 26 2019

1

Demersal Otter Trawl Survey

Ventless Trap, Black Sea Bass Pot & Plankton Survey



Benthic Imaging Survey

Acoustic Telemetry Highly Migratory Species

ADOPTION OF NEAMAP TRAWL AND SURVEY PROTOCOL

NEAMAP trawl

- •Three-bridle, four-seam bottom trawl developed by Northeast Trawl Advisory Panel
- •Thyboron IV 66" door
- •Uses a "flat-sweep" to reduce escape of fish under the net
- •The use of 1" knotless liner in the codend to retain juvenile fish


NEAMAP survey protocol (Bonzek et al., 2008)

- Commercial fishing vessel
- •Tow duration: 20 min
- •Tow speed: 3.0 knots
- •Daytime only: 30 min after sunrise 30 min before sunset

Compliments NOAA and NEAMAP surveys Regional data integration

Provides consistency between regional surveys, and possible incorporation of high-resolution data for regional ecosystem assessments

SURVEY OPERATIONS

Four seasons

- Winter: January March
- Spring: April June
- Summer: July September
- Fall: October December

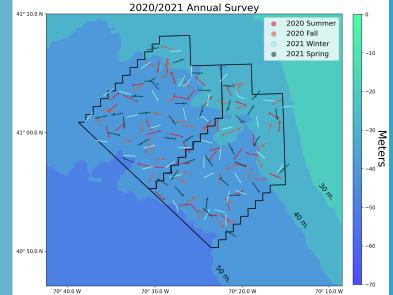
Number of tows

20 tows each in VW1 Study Area and Control Area.

Data Collected

- Trawl Performance
 - Doorspread, wingspread and headrope height
- Catch
 - Aggregated species catch
 - Individual lengths and weights
- Environmental
 - Sea state, wind speed and wind direction
 - CTD cast and bottom water temperature

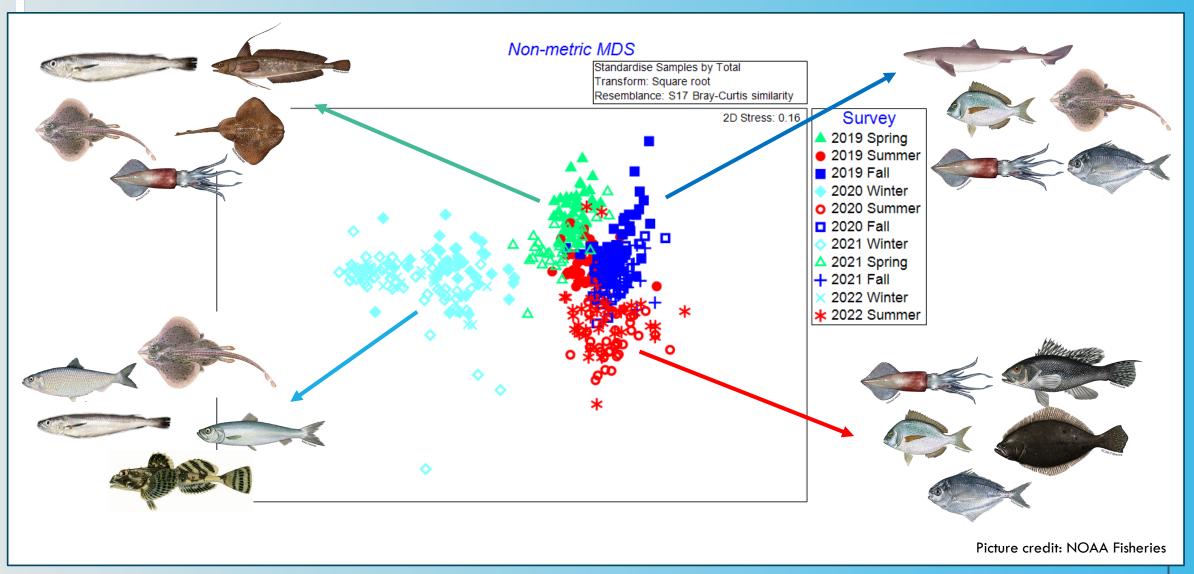
2019 – 2022 SURVEY DATA


Pre-construction surveys and tows:

- 11 seasonal surveys completed (June 2019 August 2022)
- 3 Fishing vessels used for the surveys
 - F/V Heather Lynn 9 surveys
 - F/V Guardian 1 Survey
 - F/V Endurance 1 Survey
- 440 tows

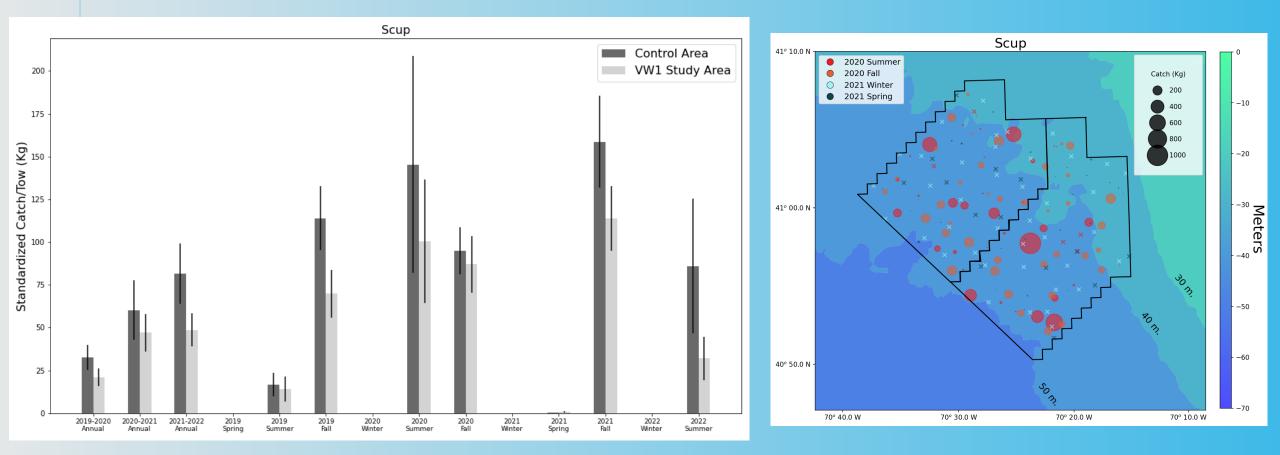
Species and measurements:

- 50 species
 - Small: Juv. Silver Hake, Squid, Scup
 - Large: Summer Flounder, Rough tail Skate, Thresher Shark
- Top 10 Abundant Species
 - 93 97% total biomass



CATCH COMPOSITION – VINEYARD WIND 1

Species Name	Scientific Name	Total Weight (Kg)	% Tows with Species Present
Dogfish, Spiny	Squalus acanthias	38258.3	50.2
Skate, Little	Leucoraja erinacea	29417.0	97.0
Scup	Stenotomus chrysops	20051.6	53.9
Butterfish	Peprilus triacanthus	15183.3	76.6
Hake, Silver	Merluccius bilinearis	15226.6	90.7
Hake, Red	Urophycis chuss	14820.0	72.5
Skate, Winter	Leucoraja ocellata	7100.7	50.0
Herring, Atlantic	Clupea harengus	4824.2	37.3
Squid, Atlantic Longfin	Doryteuthis pealei	2901.3	72.3
Haddock	Melanogrammus aeglefinus	2122.2	4.1
Alewife	Alosa pseudoharengus	2070.8	52.5
Sea Robin, Northern	Prionotus carolinus	1483.0	45.2
Monkfish	Lophius americanus	1116.6	33.0
Skate, Barndoor	Dipturus laevis	1096.9	37.0
Dogfish, Smooth	Mustelus canis	860.8	18.2
Flounder, Summer (Fluke)	Paralichthys dentatus	815.9	45.2
Flounder, Fourspot	Paralichthys oblongus	778.0	69.3
Flounder, Windowpane	Scophtalmus aquosus	544.8	57.7
Flounder, Winter	Pleuronectes americanus	368.9	45.0
Crab, Cancer	Cancer irroratus	336.7	52.0



COMMUNITY COMPOSITION ANALYSIS

EXAMPLE – SCUP (Stenotomus chrysops)

SUMMARY

- The Vineyard Wind 1 offshore wind energy area is a highly dynamic system exhibiting seasonal and annual variability in community composition, species abundances and population structure.
 - High levels of variability in most commercial species mean that moderate changes (30-50%) will be required ensure high probability of detection.
 - High levels of transience observed may be beneficial for temporary disturbance due to construction activities.
- NEAMAP survey protocols and gear were well suited and useful for monitoring a wide range of species in the area.
 - Involving commercial fishermen in the project yielded significant improvements due to their insight with the survey gear and knowledge of the local species.
 - Their witness and involvement in the data collection lent credibility within the industry.
 - During-construction monitoring has allowed fishing vessels to work in and around operating turbines.

ACKNOWLEDGEMENTS

F/V Heather Lynn: Steve Follett Paul Farnham Mike Decker Mike Gallagher Kevin Jones Matt Manchester Jeff Sanderlin Alex Romero Mark Bolster Scott Riley

Industry Partners

Ryan Roache Andrew Follett Barry Klapp

F/V Guardian: Mike Walsh Bill Walsh Adam Walsh Kirk Walters Raphael Felix Bob Felix F/V Endurance: Armando Estudante Virgilio Martins Antonio Lamiero Reidar's Manufacturing Tor Bendiksen Hans Bendiksen A.I.S.

Funding provided by:

MORE INFORMATION CAN BE FOUND AT:

https://www.vineyardwind.com/fisheries-science

crillahan@umassd.edu