Ocean Data to Advance Equity and Coexistence of Fisheries and Offshore Wind

9th World Fisheries Congress

Pathways for a Sustainable Co-existence of Offshore Energy, Fisheries and Marine conservation: From Local Empirical Evidence to Global Perspectives

Seattle, WA • March 5, 2024

Jake Kritzer (NERACOOS)*, Katy Bland (NERACOOS), Mary Ford (MARACOOS), Debra Hernandez (SECOORA), Gerhard Kuska (MARACOOS), Jackie Motyka (NERACOOS), Tom Shyka (NERACOOS)

Uncertainty Breeds Conflict & Inequity

Massive study examines offshore wind's impact on fishing, fisheries

"All of this is moving a lot quicker than the science should typically allow for the industrialization of our oceans."

April 3, 2023 • By Anastasia E. Lennon

Witness Drives Home Marine Vessel Safety Concerns as Offshore Wind Growth Questioned

Atlantic Storm Activity and National Defense Also Top Concerns
April 01, 2023 • By Gina G. Scala

Bloomberg

Pentagon Sounds Alarm Over Biden Plan for Offshore Wind Sites

April 17, 2023 • By Jennifer A Dlouhy

WORKBOAT

National Academies' offshore wind advisors meet, and critics fume

April 14, 2023 • By Kirk Moore

WINDPOWER

MONTHLY

Republicans demand whale death hearings as fishing group calls BOEM rudderless

March 20, 2023 • By Ros Davidson

Report by feds, anglers cites offshore wind impacts on fish

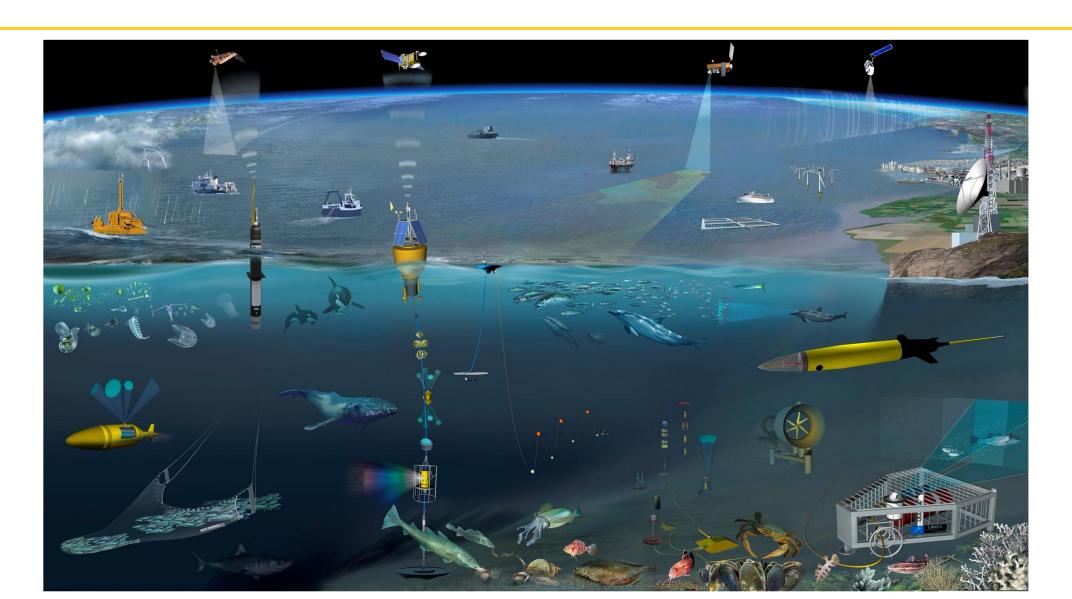
March 31, 2023 • By Wayne Perry

National Fisherman

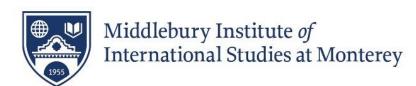
NMFS, BOEM issue offshore wind 'mitigation strategy' for fisheries studies

March 24, 2022 • By Kirk Moore

Confronting Uncertainty: U.S. Integrated Ocean Observing System

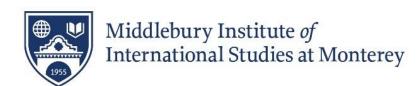


- 17 federal partners
- 11 regional associations
- 34 core variables
- Federally-certified data management


The Ocean Observing Toolkit

Who Uses Ocean Observing Systems?

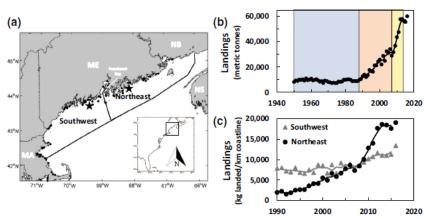
	Government	Private company	NGO	Academic	Other
AOOS	32.4%	18.9%	29.7%	13.5%	5.4%
CARICOOS	29.7%	35.1%	13.5%	13.5%	8.1%
CenCOOS	30.2%	14.0%	11.6%	38.4%	5.8%
GCOOS	12.0%	16.0%	28.0%	44.0%	0.0%
GLOS	15.4%	53.0%	6.0%	8.6%	17.1%
NERACOOS	30.1%	26.0%	9.3%	15.0%	19.7%
PacIOOS	33.7%	28.6%	6.1%	21.4%	10.2%
sccoos	47.9%	8.3%	14.6%	25.0%	4.2%
SECOORA	25.2%	13.1%	6.5%	48.6%	6.5%

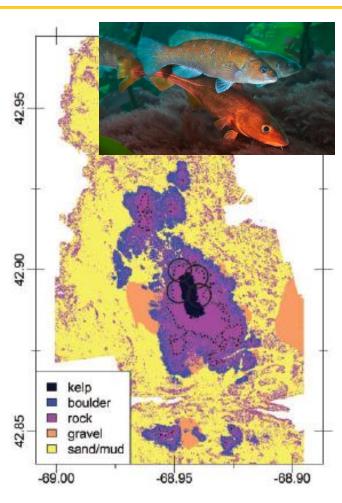


Who Uses Ocean Observing Systems?

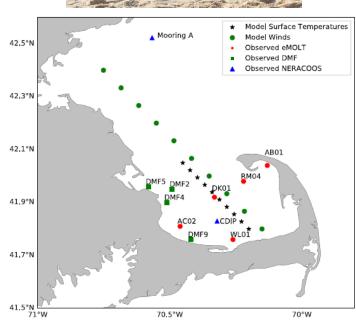
	Fishing	Shipping	Aquaculture	Recreational Guiding	Consulting	Oil and Gas	Renewable Energy	Insurance	Value Added Data	Other
AOOS	50.0%	7.1%	0.0%	7.1%	21.4%	14.3%	0.0%	0.0%	0.0%	0.0%
CARICOOS	3.9%	7.7%	0.0%	38.5%	15.4%	0.0%	7.7%	7.7%	0.0%	19.2%
CenCOOS	8.3%	0.0%	8.3%	8.3%	16.7%	8.3%	8.3%	0.0%	8.3%	33.3%
GCOOS	0.0%	0.0%	0.0%	25.0%	25.0%	0.0%	0.0%	0.0%	0.0%	50.0%
GLOS	5.0%	6.7%	5.0%	36.7%	10.0%	3.3%	3.3%	1.7%	0.0%	28.3%
NERACOOS	35.6%	6.7%	6.7%	15.6%	8.9%	2.2%	0.0%	0.0%	8.9%	15.6%
PacIOOS	7.1%	7.1%	0.0%	25.0%	21.4%	3.6%	7.1%	0.0%	0.0%	28.6%
sccoos	25.0%	0.0%	0.0%	0.0%	50.0%	25.0%	0.0%	0.0%	0.0%	0.0%
SECOORA	0.0%	7.1%	7.1%	0.0%	42.9%	0.0%	7.1%	0.0%	7.1%	28.6%

Why Are Users Coming to Ocean Observing Systems?

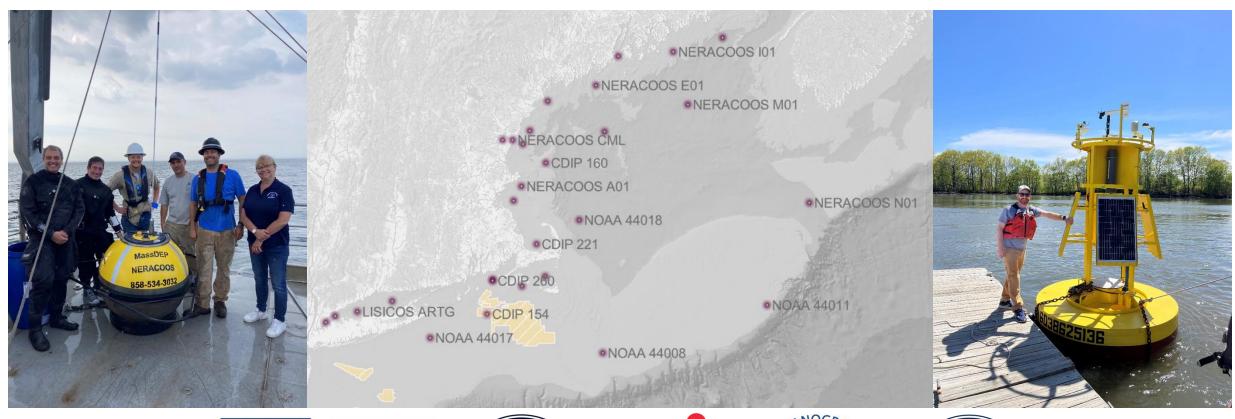

	Current Conditions	Forecast Conditions	Historical Data	Administrative Information	Resource Use
AOOS	37.6%	15.1%	28.2%	3.4%	8.7%
CARICOOS	51.5%	32.2%	7.4%	2.9%	3.1%
CenCOOS	49.5%	15.9%	19.5%	3.6%	2.0%
GCOOS	47.2%	12.5%	18.0%	6.7%	4.8%
GLOS	75.3%	15.6%	4.0%	0.7%	1.8%
NERACOOS	59.1%	16.1%	20.2%	0.8%	1.9%
PacIOOS	56.6%	33.2%	6.8%	0.9%	1.0%
sccoos	41.2%	15.4%	30.0%	2.3%	4.8%
SECOORA	44.7%	15.1%	20.7%	3.5%	4.9%



Fisheries & Wildlife Science Supported by Buoys

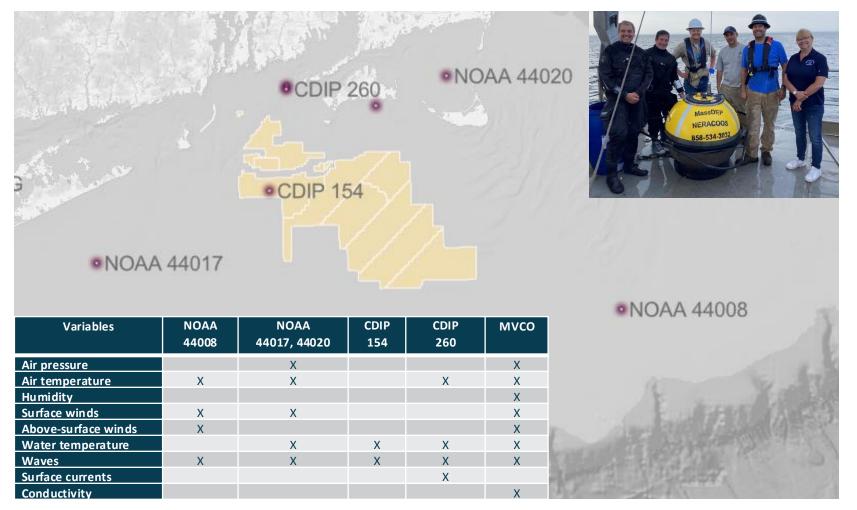


Spatial Shifts in Lobster Catch
Goode et al. 2019


Cod Spawning Patterns
Conroy et al. 2018

Predicting Sea Turtle StrandingsLiu et al. 2019

Northeast MetOcean & Ecosystem Buoy Network



Mass./Rhode Island Wind Energy Area

- Site of first utility-scale development nationwide.
- Critical to Biden-Harris goal of 30 GW by 2030.

Existing observing assets:

- Valuable for navigation and forecasting.
- Narrow set of variables.
- Lower station density.
- Limited offshore coverage.
- Few subsurface measurements.

Do These Assets Address Key Issues?

Navigation Safety

weather forecasting

Fisheries Management Stock assessment inputs; survey mitigation

Operations; search-and-rescue;

Wildlife Conservation

Detection & avoidance; prediction

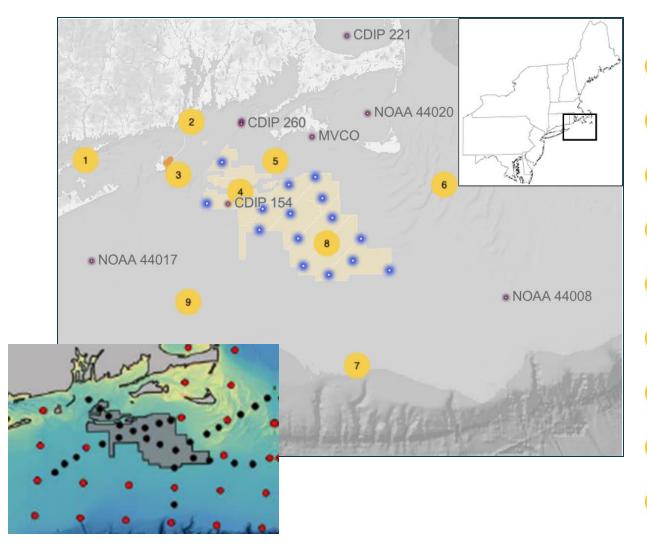
Tracking plumes; impact assessment

Climate Tracking

Long-term signals; disentangling climate & OSW impacts

Understanding End-User Needs

- Surveying public statements in the press, in comment letters, and at public hearings, workshops, trade shows, etc., to understand concerns and needs.
- Conducting informal interviews with energy company representatives, commercial fishermen, other private sector actors, researchers, and federal, state, and Tribal agencies.
- Reviewing pertinent literature, including peer-review publications, technical reports, and agency strategy documents.
- Connecting with existing and forthcoming buoy deployments by agencies and industry.



Preliminary User Needs Assessment

Variables	Navigation	Marine Pollution	Fisheries	Wildlife	Climate Tracking
	Safety		Management	Conservation	
Air pressure	W				
Air temperature	W				X
Humidity	W				
Surface winds	0, S	Т			
Above-surface winds	S				
Visibility	0, S				
Water temperature	S	А	X	X	X
Waves	0, S	Т			
Currents	S	Т	X	X	X
Conductivity		А			
Dissolved oxygen		А	Χ	X	X
Turbidity		А			
Chloro phyll			Χ	Χ	X
pH/PCO ₂		А	Χ		X
CDOM					X
Nitrate					X
Hydrocarbons		А			
Methane		А			X
Heavy metals		А			
Telemetry receivers			Χ	Χ	
Passive acoustics			Χ	Χ	
Active acoustics			Χ	X	
Fluorescence/PAR		Α			
Geno mics			X	X	
Imaging (plankton)			Χ	X	X
HABs/toxins		А	X	X	X

- Navigation Safety requires a more focused set of ocean surface and lower atmosphere measurements.
- Other issues require more measurements throughout the water column, but with considerable overlap.
- New observations address some of these needs, but are not:
 - Coordinated
 - Scaled
 - Sustained
 - Accessible

An Expanded Network Design

Location	Navigation Safety	Marine Pollution	Fisheries Management	Wildlife Conservation	Climate Tracking
1 The Race	High traffic area, incl. OSW service vessels from Connecticut ports	Eastern end of designated no- discharge zone	Migratory pathway for species to and from Long Island Sound	Endangered sturgeon migrate along the coast to spawning rivers	Sea-level rise and storm surge exacerbate coastal impacts
2 Brenton Reef	Underwater obstacle near the entryway to Narragansett Bay	Sensitive coastal habitats are vulnerable to spill events	Migratory pathway for species to and from Narragansett Bay	Endangered sturgeon migrate along the coast to spawning rivers	Sea-level rise and storm surge exacerbate coastal impacts
3 Block Island	Popular tourism destination with ferry traffic near the NW corner of the WEA	Sensitive coastal habitats are vulnerable to spill events	Existing turbines attract sport fishing activity	Endangered sturgeon migrate along the coast to spawning rivers	Sea-level rise and storm surge exacerbate coastal impacts
4 Cox Ledge	Interior WEA site that can serve maritime operations and WTRIM	Biodiversity hotspot could be vulnerable to spill events	Southernmost known spawning population of Atlantic cod	Tracking protected species within the WEA	Species composition at biodiversity hotspot could change
5 Nomans Land Island	Existing vessel traffic bottleneck that could become more congested	Sensitive coastal habitats are vulnerable to spill events	Near the boundary of a proposed new Atlantic cod stock	National Wildlife Refuge supports diverse birdlife	Sensitive geology is vulnerable to sea level rise
6 Nantucket Shoals	Important fishing ground with little data to support at- sea operations	Filter feeding scallops create human health risks following spill events	Rotational closure site for valuable scallop fishery	Feeding and migratory area for endangered right whales	Acidification impacts are of particular concern to the scallop fishery
7 Shelf Break	Point at which oceangoing vessels enter the high seas	Fewer concerns due to lower vessel density and absence of structures?	Offshore tuna and crab fisheries would benefit from data for at- sea operations	Offshore migratory route for endangered whales	Point where Gulf Stream warm core rings enter the shelf ecosystem
8 Mid-Shelf	Interior WEA site that can serve maritime operations and WTRIM	Collision risks presented by OSW facilities	Environmental measurements could support survey mitigation	Tracking protected species within the WEA	Continued tracking of Gulf Stream influences into the WEA
9 Downstream Shelf	Route for vessels from Mid- Atlantic ports serving the WEA	Fewer concerns due to lower vessel density and absence of structures?	Northern end of the Cold Pool that affects multiple target species	Offshore migratory route for endangered whales	Disentangling climate effects and influences of the WEA

Summary & Next Steps

- Uncertainty creates conflicts and distrust, and risks inequitable development of ocean industries, whereas information enables informed debate and decisionmaking.
- Ocean observing systems have the important benefit of providing coordinated, sustained, continuous, and accessible data.
- Existing observing buoys near the MA/RI WEA provide valuable data for operations and forecasts but lack many measurements and the spatial coverage needed for sustainable and equitable offshore wind development.
- Preliminary research on end-user needs related to Navigation Safety, Marine Pollution, Fisheries Management, Wildlife Conservation, and Climate Tracking identified the most important measurements for each and key spatial gaps.
- Continuing to work with industries and agencies to improve understanding of endusers needs and refine this plan.
- Implementing this plan through participatory, cross-agency, and public-private partnership presents an opportunity to promote co-existence through collaboration and a stronger information base.

